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Abstract
A prevailing notion in experimental psychology is that individuals’ performance in a task varies gradually in a continuous
fashion. In a Stroop task, for example, the true average effect may be 50 ms with a standard deviation of say 30 ms. In
this case, some individuals will have greater effects than 50 ms, some will have smaller, and some are forecasted to have
negative effects in sign—they respond faster to incongruent items than to congruent ones! But are there people who have
a true negative effect in Stroop or any other task? We highlight three qualitatively different effects: negative effects, null
effects, and positive effects. The main goal of this paper is to develop models that allow researchers to explore whether all
three are present in a task: Do all individuals show a positive effect? Are there individuals with truly no effect? Are there
any individuals with negative effects? We develop a family of Bayesian hierarchical models that capture a variety of these
constraints. We apply this approach to Stroop interference experiments and a near-liminal priming experiment where the
prime may be below and above threshold for different people. We show that most tasks people are quite alike—for example
everyone has positive Stroop effects and nobody fails to Stroop or Stroops negatively. We also show a case that under very
specific circumstances, we could entice some people to not Stroop at all.

Keywords Cognitive psychometrics · Individual differences · Bayes factors · Mixture models

A prevailing folk wisdom is that different people do
things differently; and in psychological science, the study
of individual differences has a long and storied tradition
(Cattell, 1946). A modern target of inquiry has been to
understand the covariation of individuals’ performance in
common cognitive tasks that tap perceptual, attention, and
mnemonic abilities (e.g., Miyake et al., 2000). In the
usual course of studying these relationships, individuals are
almost always considered as coming from a continuous,
graded distribution, most often the normal (e.g., Bollen,
1989).

Yet, the tasks that researchers study often have a natural
zero point. Take for example, a common number-priming
task (Naccache & Dehaene, 2001; Pratte & Rouder, 2009).
Here, participants are asked to determine whether a target
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digit is greater than or less than 5. Before participants see the
target digit, they are exposed to a briefly flashed prime. This
prime is another digit, also greater than or less than 5. The
prime may be congruent with the target, i.e., both numbers
are less than (greater than) 5, or it may be incongruent with
the target, where each has a different status from the number
5. People respond more slowly to targets when the prime is
incongruent than congruent, and this slow down defines the
priming effect. Note that there is a natural zero point where
there is no priming, that is, responses to targets are the same
for congruent and incongruent primes. A positive priming
effect occurs when responses to targets following congruent
primes are faster than those following incongruent primes;
a negative priming effect occurs when responses to targets
following congruent primes are slower than those following
incongruent primes. Here, negative and positive priming
effects are qualitatively different because they lead to
different theoretical implications. A positive priming effect
may indicate the presence of response activation from the
prime (Eriksen & Eriksen, 1974). A negative priming effect
may indicate temporal segregation and suppression (Dixon
& Di Lollo, 1994).
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Cognitive psychologists are well aware of the importance
of the qualitative and theoretical distinction between
positive and negative effects. When experimentalists can
find manipulations that switch an effect from positive
to negative, the switch itself becomes a target of study.
For example, Eimer and Schlaghecken (2002) show a
reversal of the priming effect. In their Experiment 2,
they manipulate the prime presentation duration. For
longer presentation durations, say between 60 and 100
ms, the regular, positive priming effect is observed. For
shorter presentation durations, say between 16 and 50
ms, the authors document a negative priming effect. The
combination of results is interpreted as evidence for two
different priming processes: a subliminal process leading to
inhibition, and a supraliminal process leading to facilitation
of the primed response. A second example for the reversal
of an effect comes from Rouder and King (2003). The
authors reversed the usual Eriksen flanker effect by using
morphed targets. When targets were morphed between two
letters, there was a contrast effect where responses to targets
incongruent with their surrounds were speeded. When clear
letters were used, there was the typical assimilation effect
where responses to incongruent targets were slowed down.
Rouder and King (2003) interpreted the combination of
results as implicating two separate and opposing effects in
perception and response selection.

Although these examples show that it may be possible
to reverse specific effects in tightly controlled contexts,
doing so remains quite rare. To our knowledge, nobody
has reversed the Stroop effect where responses are faster
to incongruent items than to congruent ones. Likewise, it
is unlikely that a strength effects can be reversed—that
is, we doubt, for example, that there are conditions where
responses may be quicker to dim lights than to bright
ones, and because these phenomena seemingly cannot be
reversed, simple explanations are warranted. In the strength
case, it may indicate a rather direct link between stimulus
strength and neural activation without much opportunity for
modulation from top-down processes. We suspect for a wide
class of phenomena, the zero point is never crossed (Haaf &
Rouder, 2017).

These examples, where zero is crossed and where it is
not, show the theoretical importance of the zero point in
understanding cognition. Yet, considerations of individual
differences, where individuals’ abilities are assumed to
come from a graded distribution, do not respect this
importance. If an analyst assumes say that individuals’ true
Stroop abilities come from a normal distribution, then some
people by definition are assumed to have a truly negative
Stroop effect. What a fantastic finding that would be! The
problem with graded distributions that cross the zero point
is that they deny the possibility that true-negative effects do
not occur. In doing so, they miss the possibility of important

global constraints like the impossibility of negative Stroop
effects.1

Another problem with graded distributions of individu-
als’ effects is that they explicitly assume that no individual
has a true effect of exactly zero.2 Yet, the idea that some
individuals do not display an effect is compelling from a
theoretical point of view. Are there effects where some
people are immune, and if so, how could we tell?

The main goal of this paper is to develop models that
encompass several configurations of individual variability.
Do individuals follow a graded distribution? Are there
order-constraints such that nobody can have a negative
effect? And are there individuals with truly no effect? The
work builds on our previous development where individuals
could be all positive, all negative, all null, or follow the
traditional graded normal distribution (Haaf & Rouder,
2017; Thiele et al., 2017). None of our previous work,
however, captures the notion that “some do and some don’t,”
that is that some individuals show a positive effect while
others show no effect.

Previously, researchers have attempted to solve this
problem with classification: They assume there are do-ers
and don’t-ers, and classify people as such. We show next
why this approach does not work well. Then we develop our
models and apply them to a number of extant context and
priming effects. The results are quite surprising—we show
that there are cases where “everyone does” and other cases
where “some do and some don’t.” We have yet to find a case
where some people have a negative effect while others have
a positive effect. Perhaps this unicorn is out there, and the
tools developed here define the state-of-the-art for finding it.

To understand the nature of the problem and the solution,
it is critical to distinguish between observed and true effects.
Take, for example, data from a priming task shown in
Fig. 1.3 Plotted are each individual’s sample effect—that is,
the difference between the mean response for incongruent
primes and congruent primes. The sample effects are
ordered from smallest to largest in the figure, and as can
be seen, some are negative, others are near zero, and a
few are substantially positive. However, this does not mean
that any particular person has a true effect that is negative,
near zero, or positive. True effects are the underlying latent
effects we could observe if we had infinitely many trials per
individual. They are the target of interest; we wish to know
whether they are negative, zero, or positive. The sample
effects reflect the true effects, but they are also perturbed

1This negative Stroop effect is not to be confused with the reversed
Stroop effect (e.g., Logan and Zbrodoff, 1979), where participants are
asked to respond to the word instead of the ink color of the word.
2By definition, the probability of any point in a continuous distribution
is identically zero.
3Data comes from Pratte and Rouder (2009), Experiment 2. Details on
the data set may be found in the Application section.
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Fig. 1 Individual observed effects from a priming task ordered from
lowest to highest. Shading of the points indicates the direction of the
effect according to two criteria. Dark blue points indicate a positive
priming effect for the criterion of BF > 2. Light or dark blue points
indicate a positive priming effect for the criterion of 80%CIs excluding
zero. White points indicate a null effect according to both criteria

by trial noise. Hence, some analysis is needed to infer the
qualitative status of the true effects.

The argument against classification

One approach that has been developed for the problem of
capturing individuals’ positive, negative and null effects
is classification. An example comes from Fific et al.
(2008), who classified individuals as using serial, parallel,
or coactive processing based on, among other analyses, the
direction and magnitude of an interaction contrast. In their
Experiment 1, they conclude that five participants engage
in serial processing, two participants engage in parallel
processing, and none of the participants engages in coactive
processing.We can apply a simple classification approach to
the data in Fig. 1 considering each individual’s confidence
interval (CI) around their sample effect. The idea is that the
true value is likely somewhere in the CI (cf. Morey et al.,
2016a, b). The bars show the 80% confidence intervals, and
the key observation is whether these CIs include zero or not.
We see no individuals are highly likely to have truly negative
effects, some may have null effects, and a few others are
squarely positive. Of course, we need not use CIs; we can
even calculate a Bayes factor per individual, and once again,
we conclude that some individuals show a positive effect
and some show no effect.

Yet, the approach in Fig. 1 has a flaw—it is prone to
overstating the amount of structural diversity across people.
Sample noise will make it seem that different people are
in different regions of negative, null, and positive. For
example, even if everyone was positive, by sample noise we
would expect to observe some people as having a negative

observed value, others near zero, and still others as having
a positive observed value. This critique comes from Lee
and Webb (2005) who note that it is important to model the
variability across individuals as well as within an individual.
The question, then, is what type of model should be used?

For this purpose, Lee and Webb (2005) proposed a non-
parametric Bayesian modeling approach similar in spirit
to cluster analysis. If there is a natural group structure,
individuals are clustered together. The number of clusters,
their locations, and their variances are estimated. Lee and
Webb’s approach is noteworthy in many respects, but it
does not take into account the qualitative distinctions among
negative, null, and positive effects. For example, individuals
with true effects of −20 ms and 20 ms may be lumped
together while those with true effects of 20 ms and 200
ms may be lumped apart. This is problematic because if
individuals truly differ in the sign of effects, a far more
complicated and nuanced set of processes is implicated.

To address this issue, Haaf and Rouder (2017) and
Thiele et al. (2017) developed an approach based on
model comparison. Instead of using a single model, say
a clustering-like model used by Lee and Webb (2005),
Haaf and Rouder (2017) and Thiele et al. (2017) propose
that researchers compare several different models where
each model instantiates different possible configurations
of individual differences. We extend this approach here
to assess the folk wisdom that some do and some don’t.
Figure 2 shows different possible configurations of models.
Panel A shows a strong null model. All people have a true
null effect, and this null effect is indicated by the spike
at zero. Panel B shows a common-effect model; all people
have the same true positive effect. Panel C shows a case
where individuals’ effects vary, but, importantly, they do
not cross zero. Moreover, there is no mass at zero, and
this model is a flexible version of the “everyone does”
position. Panel D shows a model where some do and some
don’t show an effect. It is a mixture model, and with
a certain probability individuals have no effect. Models
of this type are called spike-and-slab models (George &
McCulloch, 1993; Mitchell & Beauchamp, 1988), with
the spike referencing the point mass at zero and the slab
referencing the positive distribution. People who are truly in
the spike have no true effect and those who are in the slab
have a true effect in the positive direction.

Panel E shows a three-component mixture: some people
show a true positive effect, some show a true negative effect,
and some show a true null effect. This model is again a
spike-and-slab model with one spike at zero and two slabs,
one on each side of zero. Note that there are only a few
cases where this model may be theoretically implied. One
such case is Fific et al. (2008), where all three components
of the model may be mapped to different processing
architectures. Yet, we will not carry this model for the
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Fig. 2 Models capturing different configurations of individual differences in true effects. a, b A null model and a common-effect model without
individual variation. c A model with individual variability where all effects are positive. d A model where some individuals have no effect and
others have a positive effect. e A model where some individuals have no effect and others have a positive effect, and again others have a negative
effect. f Common random-effects model that captures the case where individuals come from a graded, continuous distribution

current analysis. One reason is that it is not theoretically
useful for the applications chosen here. A second reason is
that it is computationally inconvenient (We will return to
the computational difficulties in the discussion section). A
third, and perhaps most important reason, is that if this case
holds, the normal model in Panel F will fare quite well. We
show this in simulation subsequently.

Panel F shows the usual case where individuals’ true
effects follow a normal distribution. Even though the model
has a convenient mathematical form, it does not take the
theoretical importance of the zero point into account. It may
be used to highlight the differences between conventional
approaches and our development.

The goal here is to assess the evidence from the data
for the various models in Fig. 2. If models in the top
row are favored, then we may favor accounts where
each individual is behaving with the same strategies and
processes. Alternatively, if models in the bottom row are
favored, then we may favor accounts with qualitative
differences in processing and strategies among individuals.
The approach is different from categorization because the
goal is not to categorize individuals but to compare models
of configural relations that embed important theoretical
distinctions.

From a classical perspective, the analyses of and
comparison among the models in Fig. 2 is difficult. The
analyst must account for the possible range restrictions

on true effects, and doing so is known as order-
restricted inference. Order-restricted inference is a difficult
topic in statistical analysis (Robertson et al., 1988;
Silvapulle & Sen, 2011), and we know of no tests
appropriate for the comparison of the null model of
Fig. 2a to the “everyone does” model in Fig. 2c.
In contrast, Bayesian model comparison through Bayes
factors is conceptually straightforward and computationally
convenient. Gelfand et al. (1992) provide the conceptual
insights; Haaf and Rouder (2017) and Klugkist et al.
(2005) provide the computational implementations for
all the models except the spike-and-slab versions. The
development of the spike-and-slab model that encodes the
“some do and some don’t” position is novel. We are
proud of the development because the model addresses
an important element of folk wisdom, and serves as a
precursor for more advances mixture models. Moreover,
we are proud to have made the analysis computationally
convenient.

In the next section, we provide a brief formal overview of
the models depicted in Fig. 2. Following this, we informally
outline the Bayes factor model comparison strategy. With
the Bayes factors developed, we analyze priming and Stroop
interference data. We document at least one case where
the some-do-and-some-don’t wisdom seems to be a good
description.
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Models of constraints

The tasks we consider here have two conditions that can
be termed compatible and incompatible, or more generally,
control and treatment. It is most convenient to discuss the
models in random-variable notation. We start with a basic
linear regression model. Let Yijk denote the response time
(RT) for the ith participant, i = 1, . . . , I , in the j th
condition, j = 1, 2, and the kth trial, k = 1, . . . , Kij .4 The
linear regression model is

Yijk ∼ Normal(αi + xj θi, σ
2). (1)

Here, αi is each individual’s true intercept and θi is each
individual’s true effect. The term xj is an indicator for
the condition, which is zero for compatible trials and one
for incompatible trials. The parameter σ 2 is the variance
of repeated trials within a cell. The critical parameters
in the model are the true individuals’ effects, θi . Placing
constraints on these true effect parameters results in the
models depicted in Fig. 2.

Null model The null model is denoted as M0 and specifies
a true effect of zero for all individuals:

M0 : θi = 0.

This null model is more constraining than the usual
null where the average across individuals is zero. Here, in
contrast, each individual truly has no effect. An illustration
of the model is shown in the first panel in Fig. 3. The
figure illustrates the dimensionality of the models for two
participants, and it is a guide useful for the following
models. Shown are two hypothetical participants’ true
effects, θ1 and θ2, shown in the figure. For the null model,
θ1 and θ2 have to be exactly zero. As a result, the density of
the distribution of θi is a spike at zero, corresponding to the
dark point at zero in the figure. The model also corresponds
to Fig. 2a.

Common-effect model The common-effect model, denoted
M1, corresponds to the spike in Fig. 2b, and it is less
constrained than the null. Individuals share a common effect
with no individual variability,

M1 : θi = ν+,

where ν+ denotes a constant, positive effect. The first
panel in the second row of Fig. 3 shows that both θ1
and θ2 are restricted to the diagonal line, depicting that
individual participants’ effects have to be equal. The
diagonal is restricted to be positive to ensure that the model
only accounts for effects in the expected direction. Every

4Due to data cleaning or design choices, the number of trials per person
and condition may vary.

individual has the exact same true effect, but this effect is
only restricted to be positive, not fixed to a specific value.
The diagonal line results from this a priori uncertainty about
the size of the effect.

Positive-effects model The positive-effects model is
denoted M+, and it is the first model that introduces true
individual variability. True individuals’ effects may vary,
they are, however, constrained to be positive:

M+ : θi ∼ Normal+(ν, gθσ
2),

where Normal+ refers to a normal distribution truncated
below at zero, ν is the mean parameter for this distribution,
and gθσ

2 is the variance term. The model is illustrated in
the first panel of the third row of Fig. 3.5 Both θ1 and θ2 are
restricted to be positive, but can be different. Values closer
to zero are more plausible. The model roughly corresponds
to Fig. 2c. In both cases, the distribution on θi is restricted to
positive values. Yet, the shape in the figure is different from
the one for the positive-effects model specified here.

Spike-and-slabmodel The spike-and-slab model is denoted
MSS . Here, the distribution on θi consists of two
components, the spike and the slab. Whether an individual’s
effect is truly in the slab or in the spike is indicated by the
parameter zi . If an effect is truly null, zi = 0; if an effect is
truly positive zi = 1. The distribution of θi conditional on
zi is

MSS : θi |(zi = 1) ∼ Normal+(ν, gθσ
2),

θi |(zi = 0) = 0,

Here, the spike corresponds to the null model and the
slab corresponds to the positive-effects model. In model
specification, every individual has some probability of being
in the spike and a complementary probability of being in
the slab. The first panel in the fourth row of Fig. 3 shows
the model specifications for two participants. For these
hypothetical individuals, four combinations of true effects
are plausible: 1. Both individuals are in the spike. In this
case, θ1 and θ2 have to be zero, indicated in the figure by the
dark point at (0,0). 2. Both participants are in the slab. θ1 and
θ2 can take on any positive value, restricting the true effects
to the upper right quadrant in the figure, just as with the
positive-effects model. 3. θ1 is in the slab and θ2 is zero. This
case is represented by positive θ1 values on the horizontal
line at y = 0. 4. θ2 is in the slab and θ1 is zero. This case
is represented by positive θ2 values on the vertical line at
x = 0.

5For illustration, mean, and variance of the slab are set to fixed values
at ν = 0 and gθσ

2 = .072 (in seconds).
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Fig. 3 Model specification and predictions for two exemplary participants. Left column: Model specifications conditional on specific prior settings.
Middle column: Marginal model specifications integrated over prior distributions show correlation between individuals’ effects. Right column:
Resulting predictions from each model for data. The red dots show a hypothetical data point that is best predicted by the common-effect model
(second row)

Unconstrained model The unconstrained model, denoted
Mu, is the random-effects model in Fig. 2f. Here, a
normal distribution without any constraint is placed on the
individual’s true effects:

Mu : θi ∼ Normal(ν, gθσ
2).

The first panel in the last row of Fig. 3 shows these model
specifications. True individuals’ effects can take on any
values, and values closer to zero are more plausible. With

this model, there is no explicit way of taking differences in
the sign of the effect into account. The model serves as a
none-of-the-above option capturing when some individuals’
effects are truly negative.

Prior specifications and hierarchical constraints

The five models are analyzed in a Bayesian framework.
Bayesian analysis requires a careful specification of prior
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distributions on parameters. These priors are needed for
parameters αi , the individual intercepts; σ 2, the variance
of responses in each participant-by-condition cell; the
collection of zi , each individual’s indicator of being in the
spike or the slab; ν, the mean of effects; and gθ , the variance
of effects in effect-size units. The priors parameters that
are common to all models are not of particular concern.
They do not affect model comparison, and we follow
Haaf and Rouder (2017) in specification.6 Several of the
models ascribe individual differences across true effects.
In this regard, individuals should be treated as random,
and a hierarchical treatment is appropriate (Lee, 2011;
Rouder & Lu, 2005; Rouder et al., 2008). We model
individual differences as coming from either a normal or
truncated normal with free mean and variance parameters.
Prior settings on these parameters, ν and gθσ

2, may affect
inference. In the following, we describe the reasons for this
influence. We show the effects of reasonable ranges of prior
settings on these two parameters in the Discussion section.

The shared mean parameter, ν, induces correlation
between the individuals’ effects. Take, for example, the
unconstrained model. We can recast the model on θi as
θi = ν + εi , where ν remains the population mean and
εi ∼ Normal(0, gθσ

2) is the independent residual variation
specific to an individual. The parameter ν is not given.
Just as the shared effect in the common-effect model, ν

must be estimated. It has variability in this regard and this
shared variability induces a correlation between individuals’
effects. We take this variation into account by computing
a marginal model on θi . The marginal models are shown
in the second column of Fig. 3. For the unconstrained
model and the other models that specify variability, the
correlation is apparent in the figure. This correlation
induces dependency between θis, and the resultant of this
dependency is a reduction in the dimensionality of the
models. This reduction makes the unconstrained model, for
example, more similar to the common-effect model, which
is important for model comparison.

Estimationmodel

The above five models describe possible constraints on
individuals’ effects. Assessing how applicable these models
are to data is the core means to determining whether all
individuals’ true effects are positive, some individuals’ true

6An exception are prior settings on zi , the indicators of whether an
individual is truly in the spike or the slab. We set zi ∼ Bernoulli(ρ),
where ρ is the probability of being in the slab. We placed a hierarchical
prior on ρ ∼ Beta(a, b), where a = b = 1. These prior settings
represent an equal prior probability of being in the spike or the slab,
and changing them may influence model comparison greatly. For this
application, we decided not to explore other settings, because we do
not have any theoretical implications of higher slab or spike prior
probability.

effects are null, or some individuals’ true effects are even
negative. In the next section, we discuss a formal inferential
approach—Bayes factors—for model comparison. Even
though model comparison is the main target, estimating
parameters and visualizing them remains a tool for
understanding structure in data. When constructing an
estimation model here, we have two goals: One is to have
relatively few constraints on the parameters; the second is
to respect the possibility of true null effects. To meet these
goals, we place a generalized spike-and-slab model on θi .

The model has a spike at zero and a normal distribution
as slab. It may be viewed as a mix between panel a and panel
e in Fig. 2. The distribution of each individual’s effect, θi , is

θi |(zi = 1) ∼ Normal(ν, gθσ
2),

θi |(zi = 0) = 0.

This spike-and-slab model, just as the unconstrained
model in Fig. 2, is agnostic toward the direction of indi-
viduals’ effects. It is, however, appropriate for estimating
posterior spike and slab probabilities and the collection of θ .

Evidence for constraints

In the previous sections, we develop five models: the
null model, the common-effect model, the positive-effects
model, the spike-and-slab model, and the unconstrained
model that embed various meaningful constraints. Here, we
provide a discussion on how to state evidence for these five
models in the Bayesian framework. Rather than providing
a formal discourse, which may be found in Jeffreys (1961),
Kass and Raftery (1995), and Morey et al. (2016a, b), we
provide an informal discussion that we have previously
presented in Rouder et al. (2016) and Rouder et al. (2018a,
b). Informally, evidence for models reflects how well they
predict data.

The predictions for data from each of the five models
here are shown in the right column of Fig. 3. These
predictions are for observed effects, θ̂ , for each of the two
exemplary participants. Note that predictions are defined on
data while model specifications are defined on true effects,
and this difference is reflected in the plotted quantities in
the figure. For the null model, for example, true effects, left
column, have to be exactly zero, and the observed effects,
right column, are predicted to be near (0,0). The predictions
are affected by sample noise, inasmuch as sample noise
smears the form of the model.7 The remaining rows of

7More technically, the predictions are the integral
∫
θ f (Y |θ)π(θ)dθ

where f (Y |θ) is the probability density of observations conditional on
parameter values and π(θ) is the probability density of the parameters.
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Fig. 3 show the predictions for the common-effect, positive-
effects, spike-and-slab, and unconstrained models. In all
cases, the predictions are smeared versions of the models.

Once the predictions are known, model comparison is
simple. All we need to do is note where the data fall. The
red dots in the right column of Fig. 3 denote hypothetical
observed participants’ effects. These observed effects, 40
ms for participant 1 and 60 ms for participant 2, are both
positive and about equal, and we might suspect that the
common-effect model does well. To measure how well,
we note the density of the prediction at the observed data
point. The densities for the models have numeric values,
and we may take the ratio to describe the relative evidence
from the data for one model vs. another. For example, the
best fitting model in the figure, the common-effect model,
has a density that is three times the value of that of the
unconstrained model. Hence, the data are predicted three
times as accurately under the common effect model than
under the unconstrained model. This ratio, 3 to 1, is the
Bayes factor, and it serves as the principled measure of
evidence for one model compared to another in the Bayesian
framework.

Bayes factors are conceptually straightforward—one
simply computes the predictive densities at the observed
data. Nonetheless, this computation is often inconvenient
in practice. It entails the integration of a multidimensional
integral, which is often impossible in closed form and
may be slow and inaccurate with numeric methods. For
the five models here, we follow the development by Haaf
and Rouder (2017) using two methods to compute Bayes
factors: An analytic approach pioneered by Zellner and
Siow (1980) and expanded for ANOVA by Rouder et al.
(2012), and the encompassing approach introduced by
Klugkist et al. (2005). Figure 4 shows which method is used
for which of the models.

E

E

E

A

E

A

Spike−and−Slab Unconstrained

Positive Effects

Common Effect

Null
A = Analytical
E = Encompassing

Fig. 4 Bayes factor computations for the five models. Bayes factors
between the unconstrained, common-effect, and null model can be
computed using analytical solutions. Bayes factors between the spike-
and-slab model, the unconstrained model, the positive-effects model,
and the null model can be computed using the encompassing approach.
All other Bayes factors can be computed utilizing the transitivity
property of Bayes factors

The encompassing approach is used for Bayes factor
computations for the positive-effects model and the spike-
and-slab model. The computations for the positive-effects
model are detailed in Haaf and Rouder (2017). New to
this paper are model comparisons with the spike-and-slab
model. Although the spike-and-slab model is precedented
and popular, we are unaware of any prior development for
comparing it as a whole to alternatives. Our approach is a
straightforward application of the encompassing approach.
The encompassing approach is a simple counting method
within Markov chain Monte Carlo (MCMC) estimation.
Take, for example, the Bayes factor between the null model
and the spike-and-slab model. The target parameters for
the Bayes factor computation are the collection of zi , the
individuals’ indicators of being in the slab. Here we use z to
denote the vector of zi . Using these parameters, the Bayes
factor between the null model and the spike-and-slab model
can be expressed as

B0SS = P(z = 0|Y ,MSS)

P (z = 0|MSS)
,

where the event z = 0 indicates that every individual is
in the spike. This Bayes factor is the posterior probability
that all individuals are in the spike relative to the prior
probability that all individuals are in the spike. The same
approach can be used for comparing the spike-and-slab
model to the positive-effects model, using the posterior and
prior probabilities that every individual is in the slab.

Using the encompassing approach in MCMC sampling,
one can count the number of iterations where z = 0
when zi are sampled from the posterior; likewise, one can
count the number of iterations where all z = 0 when the
zi are sampled from the prior. Let z[m] denote a vector
of i samples of z (one for each individual) on the mth
iteration under the spike-and-slab model. The mth iteration
is considered evidential of the null model if all I elements
of z[m] are zero, that is, on this iteration, every individual’s
effect θi is sampled from the spike. Let n01 be the number
of evidential iterations from the posterior, and let n00 be
the number of evidential iterations from the prior. Then, the
Bayes factor is

B0SS = n01

n00
.

To compute the Bayes factor of the spike-and-slab
model to the remaining models, we use the well-known
transitivity of Bayes factors (Rouder & Morey, 2012).
Figure 4 provides an illustration for this transitivity: Say
the common-effects model predicts the data three times
better than the unconstrained model, and the common-effect
model predicts the data 20 times better than the null model.
We can use these two Bayes factors to calculate the Bayes
factor for the unconstrained model over the null model as
follows: Bu0 = B10

B1u
= 20

3 = 6.67.
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Application

We apply the five models to three different data sets: A
priming data set provided by Pratte and Rouder (2009), and
two Stroop experiments provided by Pratte et al. (2010).
The goal here is to answer the question of whether some
participants show an effect while others do not. We provide
estimation and model comparison results for the three data
sets and discuss them in the light of the experimental
paradigms.8

Priming data set

The priming data used here, reported by Pratte and Rouder
(2009), come from a number-priming task where the primes
are flashed briefly before the target stimulus is presented.9

From our experience with these tasks, we suspect the spike-
and-slab model to perform well with some participants
being affected by briefly presented primes and others not
being affected.

In the task, numbers were presented as primes, followed
by target digits that had to be classified as greater or less
than five. There is a critical congruent and incongruent
condition: The congruent condition is when the prime and
the target are both on the same side of five, e.g., the
prime is three and the target is four; the incongruent

8All analyses were conducted using R (Version 3.4.2; R Core Team,
2016) and the R-packages abind (Version 1.4.5; Plate and Heiberger
2016), BayesFactor (Version 0.9.12.4.2; Morey and Rouder, 2015),
coda (Version 0.19.1; Plummer et al., 2006), colorspace (Stauffer
et al., 2009, Version 1.3.2; Zeileis et al., 2009), curl (Version
3.2; Ooms 2017), devtools (Version 1.13.6; Wickham and Chang
2016), diagram (Version 1.6.4; Soetaert 2014a), dotCall64 (Gerber
et al., 2015, Version 0.9.5.2; 2016), fields (Version 9.6; Nychka et
al., 2015), ggplot2 (Version 3.0.0; Wickham 2009), gmm (Version
1.6.2; Chaussé, 2010), gridBase (Version 0.4.7; Murrell 2014), maps
(Version 3.3.0; Becker, Ray Brownrigg. Enhancements by Thomas P
Minka, and Deckmyn., 2016), MASS (Version 7.3.47; Venables and
Ripley 2002), Matrix (Version 1.2.14; Bates and Maechler, 2017),
MCMCpack (Version 1.4.3; Martin et al., 2011), msm (Version 1.6.6;
Jackson 2011), mvtnorm (Version 1.0.8; Genz and Bretz, 2009;
Wilhelm and Manjunath, 2015), papaja (Version 0.1.0.9709; Aust and
Barth, 2017), plotrix (Version 3.7.2; Lemon, 2006), RColorBrewer
(Version 1.1.2; Neuwirth 2014), reshape2 (Version 1.4.3; Wickham,
2007), sandwich (Version 2.4.0; Zeileis, 2004, 2006), shape (Soetaert,
2014b; Version 1.4.4; Wickham, 2007), spam (Version 2.2.0; Furrer
and Sain, 2010; Gerber and Furrer 2015), spatialfil (Version 0.15;
Dinapoli and Gatta, 2015), and tmvtnorm (Version 1.4.10;Wilhelm and
Manjunath, 2015).
9We analyze the data from Pratte and Rouder’s Experiment 2. In the
original experiment, primes were shown for durations of 16, 18, or
20 ms. We combined data from the 16- and 18-ms conditions and
disregarded the difference in duration for this analysis. There were
no apparent differences in individuals’ effects across the included
conditions.

condition is when the prime and the target are opposite,
e.g., the prime is eight and the target is four. The priming
effect refers to the speed-up in responding to the target
in the congruent versus the incongruent condition. Prime
presentation was brief by design, and the goal was to bring
it near the threshold of detection. Yet, it is well known
that this threshold varies considerably across people. For
example, Morey et al. (2008) report high variability in
individual threshold estimates for prime perception. Other
researchers use adaptive methods to change presentation
duration individually for each participant until identification
of primes is on chance (e.g., Dagenbach, Carr, and
Wilhelmsen, 1989). For any given presentation duration,
some individuals may be able to detect the prime and
others may not. This difference may lead to variability in
processing with some people processing the primes and
others not.

Results Figure 5a provides two sets of parameter-estimation
results. The first set, denoted by the crosses that span
from −0.02 s to 0.03 s, are the observed effects for the
individuals, and these are the same points that are plotted in
Fig. 1. Observed effects in this context are the differences
in individuals’ sample means for the incongruent and
congruent conditions. Crosses are colored red or gray
to indicate whether the observed effects are negative
or positive, respectively. Overall, effects are relatively
constrained with no participant having more than a 31-ms
effect in absolute value. Estimates from the hierarchical
estimation model are shown in blue circles. These estimates
are posterior means of θi where the averaging is across
the spike and slab components. The posterior weights of
being in the slab are denoted by the shading of the points
with lighter shading corresponding to greater weights. The
95% credible intervals, again across the spike and slab
components, are shown by the shaded region.

We focus on the contrast between the sample effects
and the model-effect estimates. Although the sample effects
subtend a small range of about 50 ms, the model-based
estimates subtend a much smaller range from almost no
effect to an 11-ms effect. These hierarchical estimates
reflect the range of true variation after sample noise is
accounted for. The compression is known as regularization
or shrinkage, and prevents the analyst from overstating
evidence for heterogeneity. Hierarchical regularization is
an integral part of modern inference (Efron & Morris,
1977; Lehmann & Casella, 1998), and should always be
used wherever possible (Davis-Stober et al., submitted). The
individuals’ posterior probability of being in the slab ranges
from 0.30 to 0.64.

From the model estimates, it is evident that individual
effects are tightly clustered and slightly positive with a mean
of 4 ms. Yet, these results are not sufficient to answer the



Psychon Bull Rev (2019) 26:772–789 781

Participants

θ̂

1 33

−
0.

01
0.

01
0.

03

a
Spike−and−slab

Unconstrained

Positive−effects

Common−effect

Null

b

1−to−1.6

4−
to

−1

1−to−2.6

48
−t

o−
1

6−
to

−
1

Participants

θ̂

1 38

−
0.

01
0.

01
0.

03
0.

05
0.

07

c
Spike−and−slab

Unconstrained

Positive−effects

Common−effect

Null

d

1−to−10

0−
to

−1

1−to−2

3−
to

−1

1−
to

−
26

0

Participants

θ̂

1 38

0.
00

0.
05

0.
10

0.
15

0.
20

e
Spike−and−slab

Unconstrained

Positive−effects

Common−effect

Null

f

3−to−1

0−
to

−1

8−to−1

1−
to

−6
20

00
1−

to
−

1.
2e

+
73

Fig. 5 Model estimates (left column) and Bayesian model comparison
results for (a, b) the priming data set; (c/d) the location Stroop task;
e/f the color Stroop task. Left column: Crosses show observed effects with
red crosses indicating negative effects. Points show model estimates

with lighter shading indicating larger posterior weights of being in the
slab. Right column: Bayes factors for all five models. The red frames
indicate the winning model

question whether “some do and some don’t”. It is unclear
whether everyone has a small effect or some people have no
effect while others have a slightly larger one. To answer this
question we analyze the above models and compare them
with Bayes factors. The results are shown in Fig. 5b. The
common-effect model is preferred, indicating that everyone

has a single, common effect. The next most parsimonious
model is the null model, where all individuals have no
effect, and it predicts the data about 8.60 times worse than
the common-effect model. The Bayes factor between the
spike-and-slab model and the common-effect model is 30-
to-1 in favor of the common-effect model. We take this
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Bayes factor as evidence that all do: everybody has a small
priming effect.

A location Stroop experiment

Pratte et al. (2010) ran a series of Stroop and Simon
interference experiments to assess distributional correlates
of these inference effects. As part of their investigations,
they constructed stimuli that could be used in either task,
and with this goal, they presented the words “LEFT” and
“RIGHT” to either the left or right side of the screen. In
the Stroop tasks, participants identified the location; in the
Simon task, they identified the meaning.

In their first attempt to use these stimuli, Pratte et al. (2010)
found a 12-ms average Stroop effect. This effect is rather small
compared to known Stroop effects, and was too small for a
distributional analysis. To Pratte et al., the experiment was a
failure. At the time, Pratte et al. speculated that participants
did not need to read the word to assess the location.
They could respond without even moving their eyes from
fixation, and even though reading might be automatic at
fixation, it may not be in the periphery. To encourage
participants to read the word, Pratte et al. subsequently
added a few catch trials. On these catch trials, the word
“STOP” was displayed as the stimulus to the left or right
of fixation, and participants had to withhold their response.
This manipulation resulted in much larger Stroop effects.

Here we analyze data from the failed experiment where
there was a small Stroop effect of 12 ms (Experiment 2
from Pratte et al., 2010). Our question is whether some
participants shift their attention to the word in the periphery
while others do not. In this scenario, we would find that the
spike-and-slab model would perform well. The alternative
is that all participants exhibited a small Stroop effect similar
to the priming effect above.

Results Observed effects are shown by the crosses in
Fig. 5c. Of the 38 participants, ten show an observed
negative Stroop effect, shown by red crosses in the figure.
The average effect is 11.90 ms with individuals’ effects
ranging from −19 ms to 68 ms.

Estimates from the hierarchical estimation model are
shown in blue circles, and 95% credible intervals are shown
by the shaded region. Again, hierarchical shrinkage is large,
reducing the range from 87 ms for observed effects to 45 ms
for the model estimates. Of note is also that the individuals’
posterior probability of being in the slab varies considerably,
ranging from 0.20 to 0.99. This difference in posterior
weight suggests that some individuals are better described
by the spike while others are almost definitively in the slab.

Themodel comparison results in Fig. 5d confirm this consid-
eration: the Bayes factor between the spike-and-slab model

and the runner-up common-effect model is 3.50-to-1 in
favor of the spike-and-slab model. This Bayes factor pro-
vides slight evidence for the “some do and some don’t”
wisdom in this particular Stroop experiment.

A color Stroop experiment

Pratte et al. (2010) ran another experiment, a more standard
Stroop task with color terms (Experiment 1 from Pratte
et al., 2010). For this experiment, in contrast to the failed
Stroop experiment, we expected that everyone shows a
positive Stroop effect.

Results Parameter estimates are shown in Fig. 5e. Individ-
uals’ observed effects are fairly large with an average of 91
ms with only one participant showing an observed negative
effect. There is less shrinkage than for the other data sets.
The range for the observed effects is 221 ms; the range for
the hierarchical estimates is 144 ms. Posterior probabilities
of being in the slab are high with only one person having a
lower probability than .85.

The model comparison results are shown in Fig. 5f.
Overall, there is the most evidence for the positive-effects
model. The second-best model is the unconstrained model.
The Bayes factor between these two models is 8-to-1 in
favor of the positive-effects model, and this Bayes factor
can be interpreted as evidence that all do. The spike-and-
slab model fares even worse with a Bayes factor of 1-to-23
compared to the positive-effects model. The results suggest
that everyone shows the expected Stroop effect—if targets
are presented at fixation.

Concerns

The Bayesian modeling approach developed here requires
judicious choices in model and prior specification. An
attentive reader may have some concerns about our choices.
It is reasonable to inquire about alternative models that were
not included for analysis here; specifications of the normal
and truncated normal; sensitivity of the results to prior
settings; and computational convenience of the approach.
We take these concerns in turn.

Alternativemodels

The five models developed here are designed to capture the
following theoretical positions: 1. No person may have a
true effect whatsoever; 2. Everyone has the same positive
true effect; 3. Individuals’ effects vary, but everyone has a
positive effect; 4. Some people show a true positive effect
while others truly show no effect at all; and 5. Individuals’
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effects follow a normal, graded distribution where some
people can have a true negative effect. These five, of course,
are not the only choices. Here we discuss alternatives.

One area of potential concern is the unconstrained
model. Here we use a graded normal, and this is our only
specification accounting for the possibility that some people
have truly positive effects while others have truly negative
effects. There are other model instantiations, however, that
capture this state of affairs. One useful alternative is the
mixture model shown in Fig. 2e. Here, there are three
groups of individuals: those that are positive, those that are
negative, and those that are null. Another possible model
is one with two slabs but no spike. If we are willing to
speculate, we can come up with a variety of models that
instantiate positive and negative effects.

Rather than implementing all of these possible alterna-
tives, we decided to simulate how well our unconstrained
normal model fared when the data followed these mixture
alternatives. Figure 6a shows the normal model and two
alternatives: a two-slab mixture model (labeled “Mixture
1”), and a spike-and-two-slab mixture model (labeled “Mix-
ture 2”). Our aim in choosing particulars for these truths was
to equate the overall mean and variance. The true individ-
uals’ effects for each study were the ticks at the top of the
panel. We simulated data from these true effects 100 times
for each of the three models. The Bayes factor between
the normal unconstrained model and the positive model is
computed for each of the simulated data sets. The Bayes
factor distributions from the simulation are shown in the
violin plots of Fig. 6b. The unconstrained model is favored
as frequently for the mixture truths as for the normal truth.

The critical point to emerge from this simulation study is
that the unconstrained normal model is a useful instantiation
of the unconstrained position, even when misspecified. Here
is why: The goal is to detect a few negative true effects
against a background of many true positive ones. The
normal for this configuration would have a positive mean
and sufficient variance so that there is noticeable negative
mass (as in Fig. 6a). The distribution of the negative part
is not only small in mass, but is skewed such that small
negative effects are weighted. The normal therefore is well-
suited to detect the most difficult case—the one where
negative effects are few and more likely to be clustered near
zero. Moreover, with the little negative mass that we expect
in these cases, there is little to distinguish a mixture model
from the unconstrained.

Another area of potential concern are the point-mass
specifications for the null model, the common-effect model
and the spike in the spike-and-slab model. Alternative
specifications are not just limited to mixture models. A
recent trend is to use small equivalence regions instead
of point mass (Kruschke & Liddell, 2017; Rogers et al.,
1993). Those researchers who are convinced these are
helpful models are free to use them, and the Bayes-
Factor computations are no challenge (Morey & Rouder,
2011). We do not recommend these models because they
provide for less theoretical clarity than either point-mass
models or distribution models. The point null, in contrast, is
theoretically constrained and useful. This argument is made
by Gallistel (2009), Jeffreys (1961), Rouder et al. (2016),
and Rouder and Morey (2012), just to name a few.

Effect
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Normal specification

Another concern with the proposed approach is the reliance
on normal parametric model specifications. The advantage
of the normal specification is computational convenience.
With this specification, the many dimensions of the high-
dimension integrals that define the Bayes factor may be
computed symbolically to high precision. Without this
specification, we suspect numeric integration would be
exceedingly slow and inaccurate. Yet, researchers may be
concerned about the misspecification of the normal. We
focus here on applications with response times, and RTs
are skewed rather than symmetric. Moreover, the standard
deviation tends to increase with the mean (Luce, 1986;
Rouder et al., 2010; Wagenmakers & Brown, 2007).

We think the concern about the normal specification
is misplaced. The main reason is that we focus on the
analysis of ordinal relations among true means. If we knew
individual’s true means, then we could answer questions
about the direction of the effects without any consideration
the true shapes or true variances. The inference therefore
inherently has all the robustness of ANOVA or regression,
which is highly robust for skewed distributions, so long as
the left tail is thin. Indeed, RTs tend to have thin left tails
that fall off no slower than an exponential (Burbeck & Luce,
1982; Van Zandt, 2000; Wenger & Gibson, 2004).

Thiele et al. (2017) addressed this concern through sim-
ulation. They considered highly similar models and per-
formed inference with similarly computed Bayes factors.
In a simulation, they generated data from a shifted log
normal with realistic skewness and with means and vari-
ances that varied across individuals and the manipulation.
As expected, they found exceptional robustness, and the rea-
son is clear. The main inferential logic is dependent only
on true means, and the normal is a perfectly fine model for
assessing this quantity even when the data are not normally
distributed.

Prior sensitivity

Another concern, perhaps a more pressing concern in our
view, is understanding the role and effects of the priors
on inference. In general, Bayesian models require a careful
choice of priors. These priors have an effect on inference
as noted by many Bayesians. A general idea in research is
that, if two researchers run the same experiment and obtain
the same data, they should reach the same if not similar
conclusions. Yet, the priors may be chosen differently by
different researchers, and this choice may lead to differing
conclusions. To harmonize Bayesian inference with the idea
of similar conclusions, many Bayesian analysts actively
seek to minimize the effects by picking likelihoods, prior
parametric forms, and heuristic methods of inference so

that variation in prior settings have marginal effects (Aitkin,
1991; Gelman et al., 2004; Kruschke, 2012; Spiegelhalter
et al., 2002). In contrast, Rouder et al. (2016) argue
that the goal of analysis is to add value by searching
for theoretically meaningful structure in data. Vanpaemel
(2010) and Vanpaemel and Lee (2012) argue that the prior is
where theoretically important constraints are encoded in the
model. In our case, the prior provides the critical constraint
on the relations among individuals. We think it is best
to avoid judgments that Bayes factor model comparisons
depend too little or too much on priors. They depend on it
to the degree they do.

Here we focus on understanding the dependence of
Bayes factors on a reasonable range of prior settings and
the resulting diversity of opinions. Indeed, Haaf and Rouder
(2017) took this tactic in understanding the diversity of
results with all the models except for the spike-and-slab-
model which was not developed at the time. Here we use a
similar range of prior settings to understand the dependency
on these settings.

The critical prior settings for understanding the diversity
of conclusions come from the priors on ν and εi (or gθ ).
Although they are not the primary target of inference, the
prior settings on these parameters do affect Bayes factor
results. A full discussion of the prior structures on these
parameters is provided in Haaf and Rouder (2017), and
here we review the main issues. The critical settings are the
scales on ν and εi . These scale settings are relative to σ , the
residual noise. Our considerations for these scale settings
go as follows: In tasks like this, with sub-second RTs, a
standard deviation of repeated response times for a given
participant and a given condition may be about 300 ms, and
we can use this value to help set the scales. For example, for
priming and Stroop tasks, we may expect an overall effect
of 50ms, and the scale on ν might be 50ms/300ms, or 1/6th
of the residual noise. Likewise, if the take the variability
of individuals’ effects depicted by εi , we may expect this
variation to be about 30 ms, or 1/10 of the residual noise.

With these reasonable ranges of variation, we are ready
to explore the effects of prior specification on Bayes factors.
We explore the effects of halving and doubling these
settings, which represents a reasonable range of variation.
The results are shown in Table 1. There is a fair amount
of variability in Bayes factors, and in our opinion, there
should be. The range of settings define quite different
models with quite different predictions. Nonetheless, there
is a fair amount of consistency. For the priming data, the
common-effect model is preferred for all settings, with
the null-model and the spike-and-slab models as the next
contenders. For the color Stroop data, the positive-effects
model is preferred for all settings, and the ordering for the
remaining models stays relatively constant. The only data
set where the preferred model varies with prior settings
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Table 1 Sensitivity of Bayes factors to prior settings

Scale on ν Scale on ε M0 M1 M+ MSS Mu

Priming

1/6 1/10 0.12 * 0.01 0.03 0.02

1/12 1/20 0.06 * 0.04 0.06 0.04

1/12 1/5 0.14 * 0.02 0.72 0.04

1/3 1/20 0.06 * 4.79e −8 0 1.03e −5

1/3 1/5 0.13 * 2.25 e −8 7.7e −4 0.98e −5

Location Stroop

1/6 1/10 3.68e −4 0.29 0.05 * 0.1

1/12 1/20 5.4e −4 0.54 0.33 * 0.21

1/12 1/5 2.59e −4 0.17 0.04 * 0.07

1/3 1/20 270.51e −5 29.28 0 * 118.87e −3

1/3 1/5 15.02e −3 9.69 17.25e −5 * 0.04

Color Stroop

1/6 1/10 1e −74 1.9e −6 * 0.04 0.12

1/12 1/20 1.12e −74 7.86e −7 * 0.02 0.05

1/12 1/5 1.45e −74 3.03e −6 * 0.17 0.16

1/3 1/20 8.04e −75 5.62e −7 * 0.00 0.01

1/3 1/5 1.06e −74 2.23e −6 * 0.02 0.06

Note. Sensitivity analysis of Bayes factor computation for all three data sets. Different settings of the scales on ν and ε represent a reasonable
range of priors around the setting used for the main analysis (bold). The asterisks mark the winning model for each data set for the original
analysis, and Bayes factors are computed for comparison to this model

is the location Stroop data: The spike-and-slab model is
preferred for the chosen settings and when the scale on ν

is halved. These settings indicate that small average effects
are expected for all models. When the scale on ν is doubled,
i.e., larger, about 100 ms effects are expected, the Bayes
factor between the common-effect model and the spike-and-
slab model is about 1, indicating that none of the two models
is preferred over the other. This Bayes factor, however, was
not large from the beginning, only about 3-to-1 in favor
of the spike-and-slab model. This example illustrates how
useful this type of sensitivity analysis can be to understand
the range of conclusions that may be drawn from the data. In
this case, the evidence for the spike-and-slab model is small,
and largely dependent on prior settings. For a convincing
result, more evidence for a mixture of effects would be
needed.

Computational issues

In previous work we developed the null, common-effect,
positive-effects and unconstrained models (Haaf & Rouder,
2017; Thiele et al., 2017). Here we add the spike-and-slab
model to capture the folk-wisdom that some do and some
don’t show an effect. We show it is a worthy competitor

in at least one application. The former four models are
computationally convenient both in estimation and in Bayes
factor computations. As shown in Fig. 4, Bayes factors
can be computed quickly using a combination of Rouder
et al.“s (2012) symbolic integration as implemented in the
BayesFactor package for R (Morey & Rouder, 2015)
and Klugkist and colleagues” encompassing approach (e.g.,
Klugkist and Hoijtink, 2007).

Computational convenience for the spike-and-slab model
is more nuanced. Estimation of this model is quick and
stable. The computation of the Bayes factors for the
spike-and-slab model, however, is more difficult. The
difficulty here is that Bayes factor computation relies on
the estimation of each individual’s spike indicator, zi . This
collection of parameters is estimated using Markov chain
Monte Carlo methods. For each iteration in the chain, we
note that zi[m] is either zero or one, indicating that the
ith persons’ effect is either in the spike or in the slab,
respectively. Bayes factor estimation is difficult whenever
the majority of the individuals’ effects are in the spike
or in the slab. For example, most individuals’ effects in
the color Stroop task are estimated to come from the slab
distribution. In this case, the critical event is when all zi are
zero, and this event is rare. Hence, it is necessary to run long
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chains to guarantee enough rare events to estimate its rate of
occurrence.

The good news here is that we can assess the accuracy
of the Bayes factor estimation for the spike-and-slab model
by leveraging the transitivity of Bayes factors. Figure 4
illustrates this check. We can compute the Bayes factor
between the unconstrained model and the null model
either with the encompassing approach using the spike-and-
slab model (Rouder, Haaf, and Vandekerckhove, 2018), or
directly with symbolic integration methods (Rouder et al.,
2012). We find comparable results from both methods
with between 50000 and 100000 iterations in the MCMC
chain, indicating good estimations of rates of rare events.
Analyzing all five models takes about 45 min on one data
set.

Discussion

In this paper, we address the question whether some people
show a positive effect, others show a negative effect, and
again others show no effect. The example we use here
is priming, and we trichotomize the outcome into three
basic relations: responses to congruent targets are faster
than to incongruent ones (positive effects), responses to
congruent targets are slower than to incongruent ones
(negative effects), and responses to congruent targets are
equally fast as to incongruent ones (no effects). Whether
the natural zero point is crossed or not has many theoretical
implications. Obvious applications of our approach include
context effects (e.g., Stroop, Eriksen, Simon etc.) and
strength effects (e.g., stimulus strength, mnemonic strength,
etc.).

The approach we take here is Bayesian model compar-
ison across five models: a null model, a common effect
model, a positive-effects model, a spike-and-slab model,
and an unconstrained normal model. The novel element here
is the usage of the spike-and-slab model. Although spike-
and-slab models are frequently used in statistics, their most
common application is to categorize which covariates (peo-
ple in our case) are in the spike and which are in the slab.
Our usage is novel—we ask how well this spike-and-slab
structure predicts the data relative to other models.

Several psychologists have previously asked the related
question of whether mixtures account for data. In cognitive
psychology, the most common application is whether
responses on trials are mixtures of two bases. Falmagne
(1968) was perhaps the earliest to formally explore this
notion. He asked whether response times for a given
individual are the mixture of a stimulus-driven process
and a guessing process. Indeed, this type of query has
been explored in a number of domains (e.g., Klauer and

Kellen, 2010; Province and Rouder, 2012; Yantis, Meyer,
and Smith, 1991).

Our approach differs markedly from these previous
queries. Our focus is not on characterizing trial-by-
trial variability but on characterizing variability across
individuals. We do not make as detailed commitments
to specific cognitive architectures, but provide a general
approach based on ordinal relations of less-than, same-as,
and greater-than. In this regard, our approach is more similar
to latent class models used in structural equation modeling
(Skrondal & Rabe-Hesketh, 2004). In these models, vectors
of outcome measures are assumed to come from the mixture
of latent classes of people, and the goal is to identify the
classes and categorize people into these classes (see also
Lee and Webb 2005; Navarro et al., 2006). One critique of
this approach is that the models are so weakly identified
that it is difficult to reliably recover class structure (Bauer
& Curran, 2003). We avoid this problem by restriction. We
restrict our classes into three that are well defined as the sign
of the outcome measure. In summary, while our approach
is similar in some regards to previous latent-class modeling,
the statistical development is novel in critical ways.

We apply this approach to three exemplary data sets
and find, at least for one case, some support for the claim
that some individuals show an effect while others do not.
We think, however, these mixtures are relatively rare in
cognitive psychology where experimental paradigms tend
to isolate the cognitive processes of interest. Only in cases
where this isolation is not successful mixtures may occur.
This was the case in our location Stroop example, where
participants were able to avoid reading the target words by
fixating the center of the screen.

If such a mixture occurs, then this result licenses more
complicated inquiries. The mixture implies that there are
classes of people that have qualitatively different behavior.
Why? There are many possibilities including demand
characteristics (perhaps some people did not understand the
task), strategies, and pathologies. For example, Parkinson
patients fail to display foreperiod effects (Jurkowski et al.,
2005). We think that once a mixture is documented, the
next logical step is to explore person-level covariates—are
there any performance, personality, or other covariates that
correlate well with whether a person has high probability of
being in a particular component of the mixture? Depending
on the substantive domain, the presence of mixtures licenses
an exploration for rich patterns and structure in data.

In many cases, modeling approaches can be localized
on a continuum of applicability: On the one end of the
spectrum, models are widely applicable, but they only
coarsely test theories. An example for this end would be
ANOVA or t tests. On the other end of the spectrum, models
are custom tailored to measure specific processes in specific
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tasks. Our approach is in the sweet spot between these
extremes. It is widely applicable in cognitive psychology
where priming and strength tasks are prominent, and it
addresses a question more complex than “is there an
effect” without making a detailed commitment to specific
processes. Knowing whether all do or “some do and some
don’t” remains timely and topical in perception, action,
attention and memory.

Author Note This paper was written in R-Markdown with code for
data analysis integrated into the text. The Markdown script is open and
freely available at https://github.com/PerceptionAndCognitionLab/
ctx-mixture. The data used here are not original. We make these freely
available with permission of the original authors at https://github.com/
PerceptionCognitionLab/data0/tree/master/contexteffects.
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